| Centre Number | | | Candidate Number | | | |---------------------|--|--|------------------|--|--| | Surname | | | | | | | Other Names | | | | | | | Candidate Signature | | | | | | General Certificate of Education Advanced Subsidiary Examination June 2009 # **Mathematics** MPC2 ### **Unit Pure Core 2** # Specimen paper for examinations in June 2010 onwards ### For this paper you must have: • the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator. ### Time allowed • 1 hour 30 minutes ### Instructions - Use black ink or black ball-point pen. Pencil should only be used for drawing. - Fill in the boxes at the top of this page. - Answer all questions. - Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin. - You must answer the questions in the space provided. Do not write outside the box around each page. - Show all necessary working; otherwise marks for method may be lost - Do all rough work in this book. Cross through any work that you do not want to be marked. ### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 75. ### **Advice** Unless stated otherwise, you may quote formulae, without proof, from the booklet. For Examiner's Lambda Response Could Connaction Examiner's Initials Question Mark 1 2 3 4 5 6 7 8 9 TOTAL # MANN. MANNATIS COOR ## Answer all questions in the spaces provided. The triangle ABC, shown in the diagram, is such that $AB=7\,\mathrm{cm}$, $AC=5\,\mathrm{cm}$, $BC=8\,\mathrm{cm}$ and angle $ABC=\theta$. (a) Show that $\theta = 38.2^{\circ}$, correct to the nearest 0.1° . (3 marks) (b) Calculate the area of triangle ABC, giving your answer, in cm², to three significant figures. (2 marks) | QUESTION | | |---|--| | PART
REFERENCE | ••••• | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | • | | | | | | | | | • | | | | | | | | | • | | | | | | | | | • | | | | | | | | | ••••• | | | | | | | | | | | | QUESTION
PART
REFERENCE | | |---|---| | PAR I
REFERENCE | | | | | | | | | • | • • • • • • • • • • | | | | | | | | | | | | ••••• | | | | | | | I | • • • • • • • • • • | • | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | I | | | | | | | | | | | | | | • | | | | | | | | | | | | • | • | | | | | - **(b)** Expand $\left(1 + \frac{3}{x^2}\right)^2$. (2 marks) - (c) Hence find $\int \left(1 + \frac{3}{x^2}\right)^2 dx$. (3 marks) - (d) Hence find the exact value of $\int_{1}^{3} \left(1 + \frac{3}{x^2}\right)^2 dx$. (2 marks) | QUESTION | | |-------------------------------|--| | QUESTION
PART
REFERENCE | | | NEI ENLINCE | QUESTION
PART
REFERENCE | | |-------------------------------|--| | REFERENCE | | | | | | | | | | | | ••••• | ••••• | | | | | | ••••• | ••••• | | | | | | ••••• | ••••• | www.mymathscloud.com | 3 | | The n th term of a sequence is u_n . | | |-------------------------------|------|--|-----------| | | | The sequence is defined by | | | | | $u_{n+1} = ku_n + 12$ | | | | | where k is a constant. | | | | | The first two terms of the sequence are given by | | | | | $u_1 = 16 \qquad u_2 = 24$ | | | (a |) | Show that $k = 0.75$. | (2 marks) | | (b |) | Find the value of u_3 and the value of u_4 . | (2 marks) | | (c |) | The limit of u_n as n tends to infinity is L . | | | | (i) | Write down an equation for L . | (1 mark) | | | (ii) | Hence find the value of L . | (2 marks) | | QUESTION
PART
PEFERENCE | QUESTION
PART
REFERENCE | | |---|---| | PARI | | | KEFEKENCE | I | | | | | | | | | I | | | | | | | | | | | | | | | | | • | • | | | | | | | | | | | | | | | | | | | I | | | | | | I | | | | | | I | I | | | | | | | | • | • | | - 4 (a) Use the trapezium rule with four ordinates (three strips) to find an approximate value for $\int_0^6 \sqrt{x^3 + 1} \, dx$, giving your answer to four significant figures. (4 marks) - (b) The curve with equation $y = \sqrt{x^3 + 1}$ is stretched parallel to the x-axis with scale factor $\frac{1}{2}$ to give the curve with equation y = f(x). Write down an expression for f(x). | QUESTION
PART
REFERENCE | | |-------------------------------|--| | | | | ••••• | QUESTION
PART
REFERENCE | | |---|--| | REFERENCE | | | | | | • | | | | | | | | | | | | | | | • | • | | | | | | | | | | | | | | | • | • | | | | | | | | | | | | | | | • | | WWW. Mynainscloud.com 5 The diagram shows part of a curve with a maximum point M. The equation of the curve is $$y = 15x^{\frac{3}{2}} - x^{\frac{5}{2}}$$ (a) Find $\frac{dy}{dx}$. (3 marks) - (b) Hence find the coordinates of the maximum point M. (4 marks) - (c) The point P(1, 14) lies on the curve. Show that the equation of the tangent to the curve at P is y = 20x 6. (3 marks) - (d) The tangents to the curve at the points P and M intersect at the point R. Find the length of RM. (3 marks) | QUESTION | | |-----------|--| | PART | | | | | | REFERENCE | 1 | | | 1 | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | 1 | | | 1 | | | | 11 mnn.msm6 | 14 | |-------------------------------|-------------|----------| | | 11 | TASC . | | QUESTION
PART
REFERENCE | | COUNTY C | •••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | •••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | •••••• | | | | ••••• | •••••• | | | www.mymathscloud.com 6 The diagram shows a sector OAB of a circle with centre O and radius r cm. The angle AOB is 1.2 radians. The area of the sector is $33.75\,\mathrm{cm}^2$. Find the perimeter of the sector. (6 marks) | QUESTION
PART
REFERENCE | | |-------------------------------|--| www.mymathscloud.com 13 QUESTION PART REFERENCE | | 14 | Mun. Mun. | |-------------------------------|---|-----------| | 7 | A geometric series has second term 375 and fifth term 81. | | | (a) (i) | Show that the common ratio of the series is 0.6. | (3 marks) | | (ii) | Find the first term of the series. | (2 marks) | | (b) | Find the sum to infinity of the series. | (2 marks) | | (c) | The <i>n</i> th term of the series is u_n . Find the value of $\sum_{n=6}^{\infty} u_n$. | (4 marks) | | QUESTION
PART
REFERENCE | www.mymathscloud.com | QUESTION
PART
REFERENCE | | |---|--| | REFERENCE | • | • | • | • | • | • • • • • • • • • • • | 8 (a) | Given that $\frac{\sin \theta - \cos \theta}{\cos \theta} = 4$, prove that $\tan \theta = 5$. | (2 marks) | |-------|---|-----------| |-------|---|-----------| (b) (i) Use an appropriate identity to show that the equation $$2\cos^2 x - \sin x = 1$$ can be written as $$2\sin^2 x + \sin x - 1 = 0 \tag{2 marks}$$ (ii) Hence solve the equation $$2\cos^2 x - \sin x = 1$$ giving all solutions in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$. (5 marks) | QUESTION
PART
REFERENCE | | |---|--| | PART | | | REFERENCE | | | NEI ENENOE | • | • • • • • • • • • • | nn | | |-------------------------------|--------------|---------| | | 17 mm, my me | 4 | | OUESTION. | | Noch. | | QUESTION
PART
REFERENCE | | of dico | | | | on | | | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | | | ••••• | ••••• | **9** (a) (i) Find the value of p for which $\sqrt{125} = 5^p$. (ii) Hence solve the equation $5^{2x} = \sqrt{125}$. (1 mark) - Use logarithms to solve the equation $3^{2x-1} = 0.05$, giving your value of x to four (b) decimal places. (3 marks) - (c) It is given that $$\log_a x = 2(\log_a 3 + \log_a 2) - 1$$ Express x in terms of a, giving your answer in a form not involving logarithms. (4 marks) | QUESTION
PART
REFERENCE | | |-------------------------------|--| | NEI ENENOE | ••••• | ••••• | | | | | | hun | 4 | |-------|---| | WALL | | | | MAN AND AND AND AND AND AND AND AND AND A | | | 40'COW | | ••••• | | | QUESTION
PART
REFERENCE | | |-------------------------------|------------------| | REFERENCE | ••••• | ••••• | ••••• | END OF QUESTIONS | | | | MMN. My Mathe Cloud. Com There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright \circledcirc 2010 AQA and its licensors. All rights reserved.